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Abstract

Many populations defined by illegal or stig-
matized behavior are difficult to sample us-
ing conventional survey methodology. Re-
spondent Driven Sampling (RDS) is a par-
ticipant referral process frequently employed
in this context to collect information. This
sampling methodology can be modeled as a
stochastic process that explores the graph of
a social network, generating a partially ob-
served subgraph between study participants.
The methods currently used to impute the
missing edges in this subgraph exhibit biased
downstream estimation. We leverage aux-
iliary participant information and concepts
from indirect inference to ameliorate these
issues and improve estimation of the hid-
den population size. These advances result
in smaller bias and higher precision in the
estimation of the study participant arrival
rate, the sample subgraph, and the popula-
tion size. Lastly, we use our method to esti-
mate the number of People Who Inject Drugs
(PWID) in the Kohtla-Jarve region of Esto-

nia.

1 Introduction

Valid statistical inference tasks require understand-
ing the data sampling mechanism (Heckathorn, 1997).
Often this means identifying a sampling frame, e.g.,
an enumeration of units in the population of inter-
est, and sampling from it with a known rule. How-
ever, many populations lack a conventional sampling
frame because they are characterized by behaviors
that are illegal (Frost et al., 2006; Johnston et al.,
2010) or stigmatized (Hladik et al., 2012; Kerr et al.,
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2018). These “hidden” populations include intra-
venous drug users (Crawford, 2016), undocumented
immigrants (Johnston et al., 2010), and other vulner-
able groups. Respondent Driven Sampling (RDS) is
a participant referral process frequently employed by
researchers when a sampling frame is unavailable be-
cause it preserves the privacy and safety of at-risk pop-
ulations (Heckathorn, 1997).

RDS begins with a small convenience sample of in-
dividuals, who are interviewed and asked to recruit
other members of the target population with a lim-
ited number of incentivized coupons provided by the
researchers. When individuals redeem their coupons,
they receive an incentive, are enrolled in the study,
and are asked to recruit as well. Both access and trust
are achieved by incentivizing members of the hidden
population to recruit along social connections, thereby
verifying the safety of participation. Additionally,
anonymity is preserved since only the researchers and
a participant’s recruiter know an individual’s member-
ship status.?

Although this sampling mechanism provides access to
the hidden population of interest while accommodat-
ing privacy concerns, it creates unique inferential chal-
lenges (Heckathorn, 1997). The current literature has
mainly focused on estimating prevalence of health-
related characteristics in the hidden population, e.g.,
HIV (Montealegre et al., 2013) and syphilis (Frost
et al., 2006). In order to conduct inference under this
unique sampling design, researchers create simple ap-
proximate models for RDS recruitment, often treat-
ing the implicit social network as a nuisance param-
eter (Gile, 2011; Volz and Heckathorn, 2008). In re-
cent years, focus has shifted to uncovering more about
this underlying graph (Crawford et al., 2018a; Verdery
et al., 2017) for its use in downstream estimation.

There are various approaches to estimating the over-
all size of a hidden population that do not account
for the sampling mechanism, such as RDS, and hence
may perform poorly. Simple capture-recapture meth-

"Various additional layers of protection are possible,
such as “coupons” being digital and recruiter information
remaining anonymous to recruits.
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ods require random sampling and so ignore the mecha-
nism altogether (White, 1982), and multiplier methods
(Fearon et al., 2017) depend on every survey partici-
pant accurately reporting the hidden population mem-
bership status of their acquaintances, which is unreal-
istic in many sensitive contexts. Successive Sampling
has been used to estimate population size from RDS
samples (Johnston et al., 2010), however this method
does not incorporate all the network information avail-
able. The key problem with these approaches is that
they effectively ignore the underlying graph structure
in the population. To address this, Crawford et al.
(2018b) propose to first estimate the unobserved edges
in a subgraph of the population in order to develop a
model for the hidden population size. Estimating miss-
ing graph information requires working with a model
over a complex combinatorial space, and we will il-
lustrate that the proposed maximum likelihood and
Bayesian estimators are necessarily biased or sensi-
tive to the specification of the prior (Crawford et al.,
2018b).

We make two improvements to existing estimators.
First, we apply indirect inference, a strategy that helps
debias canonical estimators via simulation, and then
we incorporate auxiliary information collected during
RDS into the estimation process. Section 2 introduces
the structure of the RDS stochastic process model and
its likelihood. In Section 3, we describe our indirect in-
ference estimator (ITE) (Jiang and Turnbull, 2004) and
show that this estimator is less biased than the MLE
asymptotically. Section 4 reviews the population size
model conditional on the complete subgraph and pro-
poses a method to incorporate additional information
into the population size estimation procedure. Sec-
tion 5 and 6 demonstrate, through simulation studies
and a case study respectively, the impact of indirect
inference estimation and auxiliary information on pop-
ulation size estimation.

2 RDS Model Setup and Issues

First Wave Third Wave

Second Wave

Figure 1: Ggr is composed of coupon exchanges —. Gg
includes both observed — and unobserved connections —.

Throughout we consider a setting where our popula-
tion is represented by a graph G = (V, E), where V is
the set of |V| = N nodes in the graph and E is the
set of all pairwise connections, or edges, between in-

dividuals. Respondent Driven Sampling (RDS) starts
with a set of seeds (node 1 in Figure 1), and then pro-
ceeds by recruiting other participants (the middle and
right panels of Figure 1) over the edges of the original
graph G. This process continues until a stopping rule
is reached (e.g., a predetermined number of recruited
individuals or a budget constraint are met). At the end
of this process, a researcher is in possession of a recruit-
ment subgraph G = (VE ER) Cc Gon [VE|=n< N
individuals. The labels of the nodes in V' denote the
order in which they arrived at the study (and so partic-
ipant ¢ was interviewed before participant j if i < j).
Importantly, this is not the vertex induced subgraph
of G that would have been observed by projecting the
original graph G onto the vertices V. We will call
this induced subgraph G° = (V' ES) and note that,
while V¥ = VE, we only have that E® C ES. If we
had access to G° then estimating the size of the graph
G would be a simple task.

There are two reasons that edges in G° are missing
in GF. First, recruiters may run out of coupons be-
fore they recruit all of their neighbors (e.g., paritici-
pant 13 in Figure 1). Second, if participant i recruits
participant k& before participant j does, a connection
{j,k} € ES will not be observed because an individual
cannot participate in the study multiple times (e.g.,
participant 6 is recruited by participant 2 before par-
ticipant 3 can recruit them in Figure 1).

We describe the data collected in RDS studies
that carry information about G®.2 Typical RDS
studies ask participants how many hidden popu-
lation members they know. For participant <,
this is their degree in the larger graph G, d; =
|[{{i,j} € E:ieVE jeVi#j}|. The vector of
observed degrees, d = (dy,ds,...,d,), is ordered by
arrival to the study. Additionally, we define a vector w
such that w; is the time between the arrival of partic-
ipant ¢ — 1 and participant ¢. This makes the full data
observed at the end of an RDS study Y = (G, d, w),
Y e ).

Our RDS arrival process model is described by wait
times attached to edges in G between recruiters with
unused coupons and unrecruited members of the hid-
den population, termed “susceptible edges” (Crawford
et al., 2018b). When the wait time associated with
edge {1, 7} expires, participant i recruits participant j
(as long as j has not been previously recruited); d; and
w; are then recorded and {i, j} is added to GF. We as-
sume that edge times are independent and identically
distributed according to an exponential distribution
(Crawford, 2016).

2The notation of Crawford et al. (2018b) is used when
possible for referential convenience.
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Assumption 1 (Exponential Wait Times) Upon
entering the study, a participant immediately becomes
active, and their susceptible edges are assigned a wait
time that is drawn independently from an exponential
distribution with common parameter X € R*. (This
combines assumptions 4 and 6 in Crawford et al.
(2018b).)

Let AS € {0,1}"*" be the adjacency matrix asso-
ciated with graph G°, where Afj = 11if {i,5} €
E® and 0 if not; let u; € u = (uj,us,...,u,) be
the number of connections study participant ¢ has
to unrecruited hidden population members, u; =
[ {{i,j} € E:j ¢ VT}|; and let M be the seed set.
Additionally, let 1t : R™*™ — R™*™ be the lower-
triangular function, i.e., for any A € R™*™, we have
{It(A)}i; = Ai;1(i < j). The joint likelihood for pa-
rameters A% and \ is

L, (YA \) = H Asj | exp (=As'w), (1)

j¢gM

where s = 1t(A°C) "1 + CTu, and C € R™ " is the
coupon matrix defined by Cj; = 1 if participant ¢ has
at least one coupon before the j** participant is re-
cruited, and zero otherwise (Definition 4 from Craw-
ford et al. (2018b)). We note that A% only enters the
likelihood through the susceptible edge vector, s. Let
A = {0,1}"*", then the maximum likelihood estima-
tor (MLE) corresponding to Equation (1) is

max

L.(Y[A, ). (2
ASeANERT ( | ) ()

{zg,xn} — arg
Both G and d function as graphical constraints en-
suring that the estimated adjacency matrix, A3, is
compatible with the observed data.

Definition 1 (Compatibility) An estimated sub-
graph GS = (?S,Es) represented by the estimated
adjacency matric A\i 1s compatible with the observed
data, Y, if the following three conditions hold: 1.
VE=VS: 2. ER C ES; 3. The degree of each i € V3
does not exceed d;. (This is Definition 5 from Craw-
ford et al. (2018b).)

2.1 Issues with Maximum Likelihood
Estimation

Beyond computational difficulties associated with
maximizing functions over graph space, the MLE in
Equation (2) can exhibit severe bias even for moder-
ately large sample sizes. We start by noting that if AS
were known, Equation (1) reduces to the likelihood of
exponentially distributed data. It is well known that
the MLE for the rate parameter of an exponential, A,
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Figure 2: This figure depicts the bias of :\\n and ‘/Alﬁ .

We can see that the bias of A and the edge set size
are positively correlated and increase as the sample
proportion decreases.

has a bias that diminishes as the sample size, n, in-
creases: [E(\) — Al = A/(n — 1). However, in RDS,
A% is not known, and the magnitude of the bias is
related to the rate of increase of both n and N (the
unobserved population size). Specifically, when A% is
unknown, Equation (1) has n+ 1 unknown parameters
that are meant to be estimated based on n observa-
tions and the graphical constraints imposed by A% —
while the parameters remain identifiable due to these
constraints, it does not mean that high quality esti-
mation is possible. This is especially true for RDS, as
the constraints are often loose in this context (n < N
and so n/N - 1).

In Figure 2, we plot the observed bias in ETSL (sum-
marized by the bias in the total number of edges:
|E(|AS]) — |AS]||) and A, following an RDS simulated
according to the generative model in Equation (1) with
A =1, a single seed participant, five coupons per par-
ticipant, and n = 100. The population graph, G,
is simulated from an Erdos-Renyi model with edge
probability p (details of this model choice are pro-
vided in Section 4). On the x-axis, we vary the to-
tal population size, N. We see that as n/N decreases
and the constraints loosen, the bias increases. The
intuition behind this is as follows. For a given A
and 7 € {1,2,...,n}, the MLE of s; without graph-
ical constraints is 1/(Aw;), which has expectation
E{1/(Aw;)} = oco. This suggests that if n/N - 1
asn — oo and N — 0o, then the MLE of s; A will have
positive bias. RDS is used in settings where n << N
(and so the constraints on s are minimal), so an alter-
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native to the MLE is needed for high quality inference.
We aim to resolve these biases using an alternative es-
timator motivated by concepts from indirect inference.

3 Indirect Inference Estimator

We define the indirect inference estimator, derive its
theoretical properties, and demonstrate its improve-
ment in estimating RDS model parameters empirically.

3.1 Indirect Inference

The indirect inference estimator (IIE) relies on speci-
fying a calibration statistic. The choice of this statistic
is not unique, but often there is a natural option in a
given problem domain (Jiang and Turnbull, 2004); we
use the MLE for A\ as our calibration statistic. The
ITE is constructed by finding parameter settings under
which the expected value of the calibration statistic
matches its observed value.

To formalize the indirect inference estimator (IIE) in
our setting, we require a few definitions. Let AT : ) —
R and A7 : Y — {0,1}""" be functions that map the
data, Y, to the solutions of Equation (2). Addition-
ally, define Ay : Y xR — {0, 1}" so that for observed
data, Y, and value X' > 0, AS(Y,\) is the solution
to Equation (2) holding A fixed at \'.

We propose the following estimation procedure for our
model parameters. Let A\, solve
A(Z)} = A(Y), (3)

EZNPAi(Y,Xm,X,,L {

and Z;S; = AJ(Y, Xn), then the ITE is the pair (S\n, Zﬁ)
The expectation in Equation (3) is taken over simu-
lated data Z = (Gf,d,w*) € Y, where w* ~ Pys )
and Pys y is the generative model described in Equa-
tion (1). The procedure for calculating the IIE is sum-
marized in Algorithm 1.

To understand why an ITE can reduce bias, we first dis-
cuss the IIE for exponentially distributed data, which
we observed in Section 2.1 are closely related to the
data generated by RDS. The important benefit of this
setting is that we are able to derive the analytic form
of the ITE.

Suppose X = (X1,...,X,,) comprises n independent
draws from an exponential distribution indexed by A €
R*. The likelihood of X is

LX) = [ dexp(=AX;) = Nexp(—A ) X;).
i=1 i=1

The MLE is A, = n/ (3.1, X;), which is distributed
according to an Inverse-Gamma distribution with

shape and scale parameters (n,n)\). The absolute bias
of the MLE is

()= 2
n—1
which is linear in A. Again choosing the MLE as the

calibration statistic in the IIE procedure, we see that
the IIE is A = (n — 1)/(>_, X;), which is unbiased.

We also compare the mean squared error (MSE) of the
two estimators,

A n2\?
+ )
n—1 (n—1)%(n—2)

Not only is A\, unbiased, it is also more accurate.

In general, the IIE is unbiased for the parameter \ if
the bias of the MLE is linear in the parameter. The ex-
ponential likelihood example above suggests that this
is possible in our setting. We formally describe the
asymptotic behavior of the bias of the ITE as compared
to the MLE in the next subsection.

Algorithm 1: The Indirect Inference Estimator
Goal: Find the estimator,

An € arg In)%n EZNPA?(Y‘A),A {

X (Z)} = AT (Y)|

Generate a grid of A* values, k € {1,2,.., K}
for kin {1,2,..., K} do
for jin {1,2,...,J} do
Find A3, = A (Y, \¥)
Simulate wait time vector w®J from the
model defined by parameters /Alfk, AF
Find Xfﬂ by maximizing Equation (2) with
generated data ZF7 = (G%, d, wh)
end

Save set {)\k,ﬁﬁ)k,yﬁl = (ijl X’fﬂ) /J}
end

Calculate k* = argmingeq1 2, ..k} Xfl — )\T(Y)‘
Output estimators {Xm /T;";} = {)\k*,AE*}

3.2 Asymptotics

To characterize the asymptotic behavior of the ITE we
assume that the MLE admits an Edgeworth expansion
(Hall, 2013).
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Assumption 2 Asn — oo,
3 AV, A) | B(V,\)
An = A

+ Vn + n

where V has a distribution that does not depend on X

and A(V,\) B(V,\) and C(V, ) are random vectors
that only depend on A and V.

cV;\)

n3/2 + Op(”ig/z),

Such an expansion holds for the MLE under general
conditions; see Section 2.4 of Hall (2013) for details.
Under this expansion, it can be seen that the bias is
of order n=1/2.

Proposition 1 Given Assumption 2, as n — oo,

Y C*(V7 )‘) —3/2
)\n:)"i_W_’_op(n )7
where V is a random variable with a distribution that
does not depend on A and C*(V, \) is a random vector

that only depends on \ and V.

Proposition 1 follows from Assumption 2 and Corol-
lary 2.1 in Gouriéroux et al. (2000). It shows that the
ITE does not have bias terms of order n~1/2
while the MLE does.

3.3 Empirical Performance: Study
Participant Arrival Rate and Subgraph
Accuracy Improvements

In this section, we empirically evaluate the finite sam-
ple behavior of our proposed IIE estimator for the two
model parameters in the likelihood of Equation (1).
We simulate RDS trajectories of size 100 over vari-
ous graph sizes, with an average wait time of A\ = 1
and each recruit having 5 coupons. The hidden pop-
ulation graph, G, is simulated from an Erdos-Renyi
model with edge probability p (details of this model
choice are provided in Section 4). In our simulations,
we vary N € {1000, 5000, 10000} and Np € {5,10, 15}.
Algorithm 1 is used to construct the IIE, and we com-
pare it to the MLE.

Table 1 demonstrates that the ITE, gﬁ , has a higher
true positive rate than the MLE in all simulation set-
tings. Importantly, Table 3 in Appendix A shows that
these improvements do not come at the expense of the
true negative rate.

The rate parameter A is of independent interest for
assessing coupon uptake speed and the time neces-
sary for recruiting a target sample size. Table 4 in
Appendix A indicates that over a range of population
sizes and graph densities, the ITE, A,, outperforms the
MLE in terms of MSE.

Remark 1 Consistent with Figure 2 and the intuition
developed in Section 2.1, the advantage of both A\, and

Table 1: Graph True Positive Rate (%)

MLE I1IE
Pop. Deg. Average Std. Average Std.
1000 5 56.66 0.85 67.61 1.47
1000 10 36.52 0.82 50.48  2.00
1000 15 29.49 0.79 47.711  2.38
5000 5 58.76  0.96 69.93 1.58
5000 10 37.00 0.91 51.73 1.92
5000 15 30.57 1.08 49.48 2.48
10000 5 59.25 0.93 72.18 1.52
10000 10 37.52 0.93 54.15 2.08
10000 15 30.50 0.84 51.30 2.22

These are the true positive rates of the estimated
subgraphs for a series of population sizes (Pop.)
and average degrees (Deg.). The standard de-
viations reported quantify the Monte Carlo er-
ror associated with these estimates based on 100
simulations.

ZTSL over Xn and gﬁ respectively s slightly greater in
high average degree and low sample proportion settings
generally.

4 Hidden Population Size Estimation

One of the primary goals of sampling hard-to-reach
populations is to estimate their total size, N. Imagine
that the population graph G = (V, E) is a sample from
an Erdos-Renyi graph model with parameters N and
p (that is, there are N individuals in the graph and
the probability of a connection between any two of
them is p). While this is a very simple model, it has
demonstrated practical utility when estimating hidden
population size, forming the basis for methods such as
the snowball sampling estimator (Frank and Snijders,
1994) and the network scale-up estimator (Killworth
et al., 1998). Under an Erdos-Renyi model, the degree
of each individual in G is distributed as

d; ~ Binomial(N — 1, p).

If we had access to a simple random sample of individ-
uals, then we could directly estimate IV based on this
likelihood.

Unfortunately, RDS does not yield a simple ran-
dom sample from the population (e.g., an individ-
ual’s probability of being sampled depends on their
degree (Heckathorn, 1997; Gile, 2011)). Conditional
on the (unobserved) A° it is possible to write down
the distribution for the number of edges individual
i € {1,2,...,n} shares with unsampled members of
the hidden population at the time of individual i’s re-
cruitment. Let d¥ = d; — '} 1 ({i,j} € ES), and
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note that, unlike d;, this quantity is independently and
identically distributed from a Binomial distribution,
d¥ ~ Binomial(N — i,p).

4.1 Revising Current Approaches

Based on this population size model, Crawford et al.
(2018b) propose an approximate Bayesian MCMC
sampling scheme with strong priors on p and A° to
conduct inference on N. Unfortunately, they find that
informative priors on p are necessary for ensuring fi-
nite first and second moments of the posterior distri-
bution for N. For example, the most diffuse prior
on p they use in their simulations has a variance of
about 5 x 107%. Moreover, they require an informa-
tive prior on the graph space m(A%) x exp(—v|E®|),
where v = —log(p/(1 — p)) ranges from about 5 to
9, imposing heavy penalties on graphs with large edge
sets. These priors inflate the posterior mean of N,
resulting in significant upward bias.

Prior selection is non-trivial in our problem. Choos-
ing a non-informative prior risks an improper posterior
(Kahn, 1987), but, given the nature of the populations
we aim to study, it is unlikely that strong informative
priors are scientifically justifiable. Moreover, full pos-
terior inference for IV is not possible due to computa-
tional constraints, requiring multiple approximations
(Hunter and Handcock, 2006; Crawford et al., 2018b).
We avoid these issues by reformulating the problem
as regularized maximum likelihood estimation, which
incorporates information on edge prevalence, p, via
a regularization term. Given regularization function
R(p) = logBeta(p;a,b) for a,b € RT, we define the
regularized MLE estimates of N, p conditional on 21\5
and /le respectively,

{ﬁ,]\Af} = argmax log /J(N,p|gs) + R(p),
P

{5, N} = argmax log £(N,plA5) + R(p),
p,

4.2 Improving Estimation Using Auxiliary
Information

The RDS data collection process commonly includes a
large survey that can be used to improve population
size estimation. In particular, it is common to track
how information accumulates over the RDS process,
and this measurement necessarily carries information
about the underlying network. For example, an RDS
interview may begin with a quiz about local free re-
sources, important public health issues, or beneficial
health practices (e.g., for People Who Inject Drugs
this might include drug therapy options or needle ex-
change sites). The interview ends with the interviewer
revealing the answers to the quiz so that each study

participant leaves the study with the same amount of
information. The performance of a study participant
on this quiz is the graph dependent outcome, Q. Be-
low we propose a model for Q that, when combined
with the ITE approach of Section 3, provides substan-
tial improvements over the population size estimates
of the previous section.

Remark 2 Other graph-dependent outcomes are cer-
tainly possible: measurements may depend on partici-
pant interactions with their friends or require partici-
pants to quantify some characteristic of their referral
chain. These different types of Q would simply require
different models from the ones we study below, but
would otherwise be easily incorporated into the anal-
YSis.

Define monotonically increasing functions f : R — R
and g : R - R, 1, = (1,1,...,1) € R", and an n
dimensional distribution F,,. If we assume that there
is communication over the network, then the perfor-
mance of an interviewee on the quiz should be pro-
portional to their connections to previously recruited
study participants,

Q:f{a+79(m>}+6m €n ~ Fn, (4)

where m = {A4%.1t(1,1])} 1,. In Equation (4),
« represents an average hidden population member’s
knowledge of the quiz subject without outside inter-
vention and + is the intensity of communication flow.
Adding information about the outcome Q to our anal-
ysis will improve our estimation of m, which will im-
prove estimators of A5 and N.

We now augment our ITE procedure with the auxiliary
information contained in Q. We expand Y to include
the regression information, Y" = (Q,G%,d,w) € Y.
Define )\I : V' — R as the function that maps the
data, Y", to the MLE for A, and define A" : V" xR —
{0,1}" so that for value N > 0, AY"(Y,\) is the
MLE estimator of AS holding A fixed at X. Let A"
solve

Ezr~
Z7~P 5

s s
s @O} =X, (5)
and Zﬁﬂ" = Af’T(YT7 Xg), then the ITE is now the pair
(A7, AST). The expectation in Equation (5) is over
simulated data Z" = (Q, G®,d,w*) € Y, where w* ~
Pys  and Pys y is the generative model described in
Equation (1). Algorithm 2 in Appendix D builds on
Algorithm 1 and provides the complete description for
this computation. The regularized MLE estimator of
population size conditional on the IIE with auxiliary
information is

{77, N7} = argmax log L(N,plA57) + R(p).
p,
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5 Population Size Estimation
Simulations

In this section, we empirically evaluate the ITEs of hid-
den population size with and without auxiliary infor-
mation. The first simulation study compares our esti-
mators to state-of-the-art competitors on a variety of
population sizes and graph densities. The second sim-
ulation showcases the robustness of our estimators to
the misspecification of the graph model in Section 4.

Simulation 1 For each simulation, we draw a hid-
den population graph from an Erdos-Renyi model,
G ~ ER(N,p), varying N € {1000, 5000, 10000} and
Np € {5,10,15}. We then simulate an RDS study
of size n = 100 over this graph, starting from 3 ran-
dom seeds. The RDS follows the generative model
specified in Equation (1) with A = 1 and 5 coupons.
Letting I,, be the n-dimensional identity matrix and
m = {A%1t(1,1))} 1,,, we observe a vector of study
participant attributes, Q, drawn according to
Q=a+ym-+e,, €,~N(0,1I,0%),
which is within the class of models outlined in Equa-
tion (4). We set a« = 0, v = 1 and 0 = 1 and exper-
iment with regularization information on p to explore
the utility of social network edge density information
when estimating population size. This procedure is
repeated 200 times for each simulation setting.

We compare our estimators to the MLE derived in
Crawford et al. (2018b) as well as to several estimators
proposed in Handcock et al. (2014) that use the suc-
cessive sampling (SS) method. Under a uniform prior,
the SS estimators, which are posterior summaries, re-
quire the researcher to specify the maximum that the
population size can attain, Ny.x. For a given N, we
use values Nyax € {3N,5N,8N}.

Figure 3 reports the results across all nine simulation
setups. First, we note that the IIEs with and with-
out auxiliary information have lower maximum ab-
solute deviation (MAD) than the MLE over a range
of hidden population graph sizes and densities. The
weak regularization information setting is defined by
R(p) = log Beta(p; a, b), where Beta(p; a, b) is centered
at p with a = 0.1. Consistent with Remark 1, the
improvements of the ITE without auxiliary informa-
tion over the MLE are greater in high average degree
settings. The improvements of the IIE with auxiliary
information over the ITE without auxiliary information
follow the same pattern. When comparing to the SS
approach, we note that the estimators based on this
procedure are very sensitive to the prior specification.
In fact, the MAD for the SS Mean estimator (the pos-
terior mean) where Ny = kN for k € RT is almost

exactly |(k — 2)N — n|/2, which is the absolute differ-
ence between the prior mean and N.

In Appendix C, we explore the role of regularization
in our estimator. Figure 4 in Appendix C shows that
in the strong regularization setting, where R(p) =
log Beta(p; a,b) and a = 10, the improvements of N
and N” over N are higher in larger populations.

Simulation 2: Graph model misspecification
We assess the sensitivity of our population estimate
results to the Erdos-Renyi model assumption. Follow-
ing Crawford et al. (2018b) and Gile et al. (2018), we
divide the hidden population into two groups, V4 C V
and Vg = V' \ V4. The probability of an edge between
members of the same group is p;,, and the probability
of a connection between members of different groups
is poyt. For constant ¢ € [0,1], we set poyt = cpin,. We
let p* = P(E;; € E), where nodes ¢ and j are drawn
uniformly at random from V.

For our simulations, we set N = 5000 and p* = 0.002
(implying an average degree of 10). Additionally,
we let R(p) = logBeta(p;a,b), where a = 100 and
Beta(p; a, b) is centered at p;,,, mimicking an ignorance
of the two block structure. This simulation setting
tests the sensitivity of our results to the misspecifica-
tion of the graph model and (very strong) incorrect
regularization information. As expected, Table 5 in
Appendix B indicates that the MAD of N, N, and
N7 is higher when the blocks are evenly split and the
difference between p;, and p,,. is large. For example,
when ¢ = 0.3 and the groups are evenly split, the esti-
mators demonstrate a 150% — 300% increase in MAD
over the estimators in the correctly specified setting,
while when ¢ = 0.9 and Nao/N = 0.75, the increase
is only 19% — 34%. Encouragingly, the ITE with and
without auxiliary information still perform better than
the MLE in this misspecified setting, however the ben-
efits are smaller.

6 Application: How many people
inject drugs in the Kohtla-Jarve
region of Estonia?

According to the European Drug Report 2023, from
2015-2021 Estonia had the highest per capita preva-
lence of People Who Inject Drugs (PWID) in Europe.
There is also evidence of high HIV (Degenhardt et al.,
2017) and drug overdose death (related to the intro-
duction of Fentanyl) rates among PWID in Estonia
during this time period (Uuskiila et al., 2020). Es-
timating the number of PWID is imperative for un-
derstanding the magnitude of this public health crisis
and the necessary scope of potential policy solutions.
Specifically, syringe exchange programs were launched
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in 1997 to lower the prevalence of HIV among PWID
in Estonia. Without estimates of the PWID popula-
tion size, it is difficult to confirm that this program’s
current resources are sufficient (Wu et al., 2017).

Wu et al. (2017) use data from an RDS sample con-
ducted in 2012 to estimate the number of PWID in the
Kohtla-Jarve region of Estonia. They compare a series
of models including the standard multiplier method
(Fearon et al., 2017), successive sampling (Johnston
et al., 2010) and the network-based approach (Craw-
ford et al., 2018b). This RDS sample began with 6
seeds and includes 600 participants from the Kohtla-
Jarve region. The data on each member of the study
includes their arrival time, degree, recruiter identity,
and allotted coupons. We use the IIE approach of Sec-
tion 4, estimating the population size to be N = 795.
This is contained within the intervals implied by pre-
vious estimates (Wu et al., 2017).

These data further include an indicator of whether the
participant is using antiretroviral therapy (ART) for
HIV. We use this covariate and the RDS sample to
construct a data-realistic simulation study to showcase
how a hypothetical network-based covariate could as-
sist in estimating population size. A simple change to
the study would have asked each person to share their
ART status with their social connections in the PWID
population (to hopefully increase screening for HIV
and uptake of ART). The auxiliary information to be
collected from each RDS participant is then a measure-
ment of how many people have shared their ART sta-
tus with them since the beginning of the study. Letting
xarr € {0,1}™ be the indicator of ART status, the
responses to this question, Q = (q1,qs,-- -, qn), could
follow a Poisson model similar to the one described in
Section 5, Q = Poisson [{A% - 16(1,1,))} xarr]. For
this simulation we choose a subgraph A” that is com-

patible with the RDS observed and set A\ = Xn =0.23
(estimated from the original data without auxiliary in-
formation). Based on these two values, N = 1105 in
this simulation. We incorporate the auxiliary informa-
tion in Q to improve our estimation of N as outlined
in Section 4.2. Table 2 compares N” and N, and we
see that when such auxiliary information is available,
leveraging it improves (by approximately 20%) popu-
lation size estimation.

Table 2: Population Estimation MAD

Algorithm MAD  Std.

MLE 219.1 9.3
IIE w/ Info  181.3 6.8

This table displays the MAD from the population
size conditional on simulation parameters in Sec-
tion 6.

7 Conclusion

RDS provides access to populations often excluded
from scientific discourse. Although this sampling pro-
cess presents a variety of inferential problems, it also
contains valuable information on the social network
connecting study participants. This paper expands
on the existing literature with new mechanisms for
improving estimation of the study participant arrival
rate, complete subgraph, and population size. The
first accounts for the the bias of the MLE using con-
cepts from indirect inference, and the second proposes
a mechanism for including auxiliary information. Both
methods combine to achieve cutting edge performance.
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A Additional Simulation Results for
Section 3.3

This section contains simulation results that are refer-
enced in Section 3.3 of the main text. It continues the
empirical evaluation of the ITE for the two model pa-
rameters in Equation (1): A®, the subgraph between
study participants, and A, the study paricipant arrival
rate. Table 1 in Section 3.3 of the main text shows that
A% the IIE of A% has a higher true positive rate than
ETSL , the MLE of A%, across all simulation settings.

We first evaluate the error rates of AS and AS in more
detail. Table 3 reports the true negative rates (TNR)
of 25 and 215 over a range of graph densities and pop-
ulation sizes. It shows that there is no discernible dif-
ference between the TNR of the IIE and MLE in these
settings. Therefore, the higher true positive rates of
A% depicted in Table 1 do not come at the expense of
overall accuracy.

We also compare the performance of the IIE and the
MLE for XA in terms of MSE. Table 4 shows that the
IIE, Ay, is considerably more accurate than the MLE,
An, over a range of graph sizes and densities. We ob-
serve thai A, has an MSE that is less than 50% of the
MSE of A, across all settings. Additionally, the dif-
ference in MSE between A, and )\, is slightly higher
with larger population sizes, which correspond to lower
sample proportions (since the sample size is held fixed
at n = 100), and higher average degrees.

Table 3: True Negative Rates of A\i and AS (%)

MLE ITIE
Pop. Deg Average Std. Average Std.
1000 5 99.61 0.01 99.61 0.01
1000 10 99.08 0.01 99.08 0.01
1000 15 98.61 0.02 98.61 0.02
5000 5 99.92  0.00 99.92  0.00
5000 10 99.83 0.01 99.82 0.01
5000 15 99.72  0.01 99.72 0.01
10000 5 99.96 0.00 99.96 0.00
10000 10 99.90 0.00 99.90 0.00
10000 15 99.87 0.01 99.87 0.00

These are the true negative rates of ﬁi and gﬁ for a
series of population sizes (Pop.) and average degrees
(Deg.). The standard deviations reported quantify
the Monte Carlo error associated with these esti-
mates based on 100 simulations.

Table 4: MSE of A, and X,

11IE MLE
Pop. Deg. Mean Sd  Mean Sd
1000 5 0.09 0.02 021 0.02

1000 10 0.11 0.02 0.28 0.03
1000 15 0.09 0.02 0.24 0.03
5000 5) 0.11 0.02 0.25 0.02

5000 10 0.13 0.03 0.36 0.04
5000 15 0.10 0.02 0.27 0.03
10000 3 0.10 0.02 0.28 0.03

10000 10 0.12 0.03 0.32 0.04
10000 15 0.09 0.02 0.29 0.03

These are the MSEs of the A estimators for a se-
ries of population sizes (Pop.) and average degrees
(Deg.). The standard deviations reported quantify
the Monte Carlo error associated with these esti-
mates over 100 simulations.

B Stochastic Block Model Sensitivity
Analysis

This section presents additional results for Simulation
2 from Section 5 in the main text. In this simula-
tion, we test the robustness of our population size es-
timators to misspecification in the graph model. The
Erdos-Renyi model we employ assumes that edges be-
tween members of the population form with the same
probability, p. However, individuals may be more
likely to form connections with one group of people
than another. Consider the following generative model
for the population graph, G = (V,E). The hidden
population is divided into two groups, V4 C V and
Vg = V \ V4 with sizes Ny = |V4| and N = |Vp|.
The probability of an edge between members of the
same group is pin, and the probability of a connection
between members of different groups is pout. For con-
stant ¢ € [0, 1], we set ¢pout = Pin SO that pim > Dout.
This is an example of a stochastic block model, which
is used throughout network analysis (Holland et al.,
1983; Lee and Wilkinson, 2019; Khabbazian et al.,
2017). We let p* = P(E;; € E), where nodes i and
j are drawn uniformly at random from V. Defining
Eo and Ej, as the set of edges between and within
groups respectively, we derive an expression for p* in
terms of pout and c,

p" =P(E; € E)
=P(Ei; € Fout) * Pout + P(Eij € Ein) * Pin
2N4Np
(Na + Np)(Na + N — D)7
NA(NA — 1) —|—NB(NB — 1) '
(Na+ Np)(Na+ Np—1) ™
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Since CPout = Pin,

*

_ 2NANp 4+ ¢(Ns(Na — 1)+ Np(Np — 1))
B (Na+ Np)(Na+ Np —1)

Pout -

We use this expression to set the overall edge preva-
lence in the simulations summarized by Table 5, mak-
ing N = 5000 and Np* = 10.

To assess the sensitivity of our population size estima-
tors to the Erdos-Renyi model assumption, we vary
N4/N and ¢. As Ny/N — 1 (or 0) or ¢ — 1, the
Erdos-Renyi model becomes a better approximation of
the truth. As Na/N — 0.5 and ¢ — 0, there is more
heterogeneity in the graph edge probabilities, and the
approximation becomes worse. We can see this pat-
tern in Table 5. The first line of the table, No/N =1
and ¢ = 1, shows the MAD of our population size esti-
mators under the Erdos-Renyi model for comparison.
When ¢ = 0.3 and Ny/N = 0.5, the error of the esti-
mators is highest, and when ¢ = 0.9 and N4 /N = 0.75,
it is lowest. The rest of Table 5 illustrates a continu-
ous spectrum between these two extremes. Lastly, as
mentioned in Section 5 of the main text, the IIEs with
and without auxiliary information still perform better
than the MLE in this misspecified setting.

Table 5: MAD with Incorrect Strong Regularization
Information for the Stochastic Block Model

Nio/N ¢ MLE IIE IIE w/ Info
1.0 1.0 861.6 560.9 459.4
0.50 0.3 23187 2071.8 2021.4
050 0.6 1711.1 1425.1 1344.8
050 0.9 11161  755.6 638.7
0.75 0.3 17841 1519.8 1443.4
0.75 0.6 15023 11785 1079.9
0.75 0.9 10395  672.6 614.2

This table displays the Mean Absolute Deviation
(MAD) of the population estimators over a series of
N4 /N and c values. We use very strong regulariza-
tion information centered at pin to mimic ignorance
of the two block structure. These results are aver-
aged over simulations with Monte Carlo standard
deviation error below 25.

C Simulation Results under Strong
Regularization for Section 5

In this section, we present the results of a sim-
ulation under strong regularization. As described
in Section 4.1 of the main text, we use a regular-
ized MLE approach to estimate population size to
avoid specifying informative priors that are difficult
to justify scientifically. The regularization function,
R(p) = logBeta(p; a,b), incorporates information on

edge prevalence, p — where Beta(p; a,b) is a Beta dis-
tribution that is centered at p with a variance that
is inversely proportional to a. Here we use the same
setup as Simulation 1 but vary the hyperparameters
in the regularizer.

In Figure 3 of Section 5 in the main text, we compare
the MAD of N (MLE), N (IIE), and N" (IIE with
auxiliary information) with a = 0.1, and a series of
Successive Sampling (SS) estimators. We observe that
Jy " improves on N , and both are more accurate than
N. Additionally, the performances of the SS estima-
tors are highly dependent on their prior. In Figures 4a
and 4b, we show the log(MAD) of N, N, and N” with
a =1 and a = 10 respectively. The relationships be-
tween estimators N, N and N" mirror Figure 3. En-
couragingly, the MAD of our population size estima-
tors decreases significantly as a increases, and, with
strong regularization information, N, N and N" are
consistently more accurate than the SS estimators.

D IIE and Successive Sampling
Algorithm Details

In this section, we present the details of Algorithms 1
and 2 (Algorithm 1 is introduced in Section 3 of the
main text).

Both algorithms construct the IIE by finding the pa-
rameters under which the expected value of a calibra-
tion statistic is equal to the observed value, where we
set the calibration statistic equal to the MLE of A. In
the simulations of Section 5 in the main text, we use
K =9 grid values centered at A,,, the MLE for the ob-
served data. Specifically, we set \¥ = \,, — (k—4) x 0.1
for k € {1,2,...,9}. For each set of candidate param-

eters, {\¥, AF(Y,\*)} and {/\k,Af’T(YT, /\k)} for Al-
gorithms 1 and 2 respectively, we approximate the ex-
pected value (with J = 25) of the MLE of A, labeling
this quantity Xﬁ The IIE are the parameters under
which Xﬁ is closest to Ap.

As described in Section 4.2 of the main text, Algo-
rithm 2 augments Algorithm 1 with auxiliary informa-
tion. We note that this implies the MLE is taken with
respect to different likelihoods in Algorithms 1 and 2.
Defining g € R? for p € N as the parameter that in-
dexes the distribution of Q, the MLE referenced in
Algorithm 2 is

max
ASe A NeRT,BERP

{45 30,80} = arg L,(Y,QIA%, N, B).

Algorithms 1 and 2 take about 24 hours to run with a
sample size of 100 implemented by the code included
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Figure 4: This figure compares the performance of N , N , and N" under strong regularization information over
a series of population sizes, N, and average degrees, Np, with 90% Monte Carlo confidence intervals.

in the Supplementary Material.

Lastly, we use the SSPSE package (Handcock et al.,
2023) under a “flat” prior setting to construct the SS
estimators analyzed in Figures 3 and 4.
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Algorithm 2: The Indirect Inference Estimator
with Auxiliary Information

We want to find the estimator,

X, € arg min \Ezp o, Az} = AT(Y")

SOYTIA)A

Define 3 as the parameter that indexes the
distribution of Q;
Generate a grid of \* values, k € {1,2,..,K} ;
for kin {1,2,..,K} do
for jin {1,2,..,J} do
Find Afyj =maxys g L(AY, BIA*, Y");
Simulate wait time vector w*7 from the
model defined by parameters Af, o A
Find /):fl’j, A\EJW' by maximizing the
likelihood conditional on the generated
data Zj ; = (wh7, GE d, Q);

end
T
Save vector (\*, A%, B AF = =)
end

Calculate k* = arg miny, ‘Xﬁ — ALY

Our estimator is then

(N A5 57) = (W, 48,8

)




