HIDDEN POPULATION ESTIMATION WITH INDIRECT INFERENCE AND AUXILIARY INFORMATION Justin Weltz, Eric Laber, and Alexander Volfovsky Duke University

Introduction

How do we sample a population that is hard-to-reach to perform statistical inference?

Examples

• People who are unhoused

• People who are undocumented

• People who inject drugs

Sampling Difficulties

- Identification
- Trust

• Anonymity

Solutions

Solution 1: Indirect Inference Estimation (IIE)

The IIE is constructed by finding parameter settings under which the expected value of a calibration statistic matches its observed value.

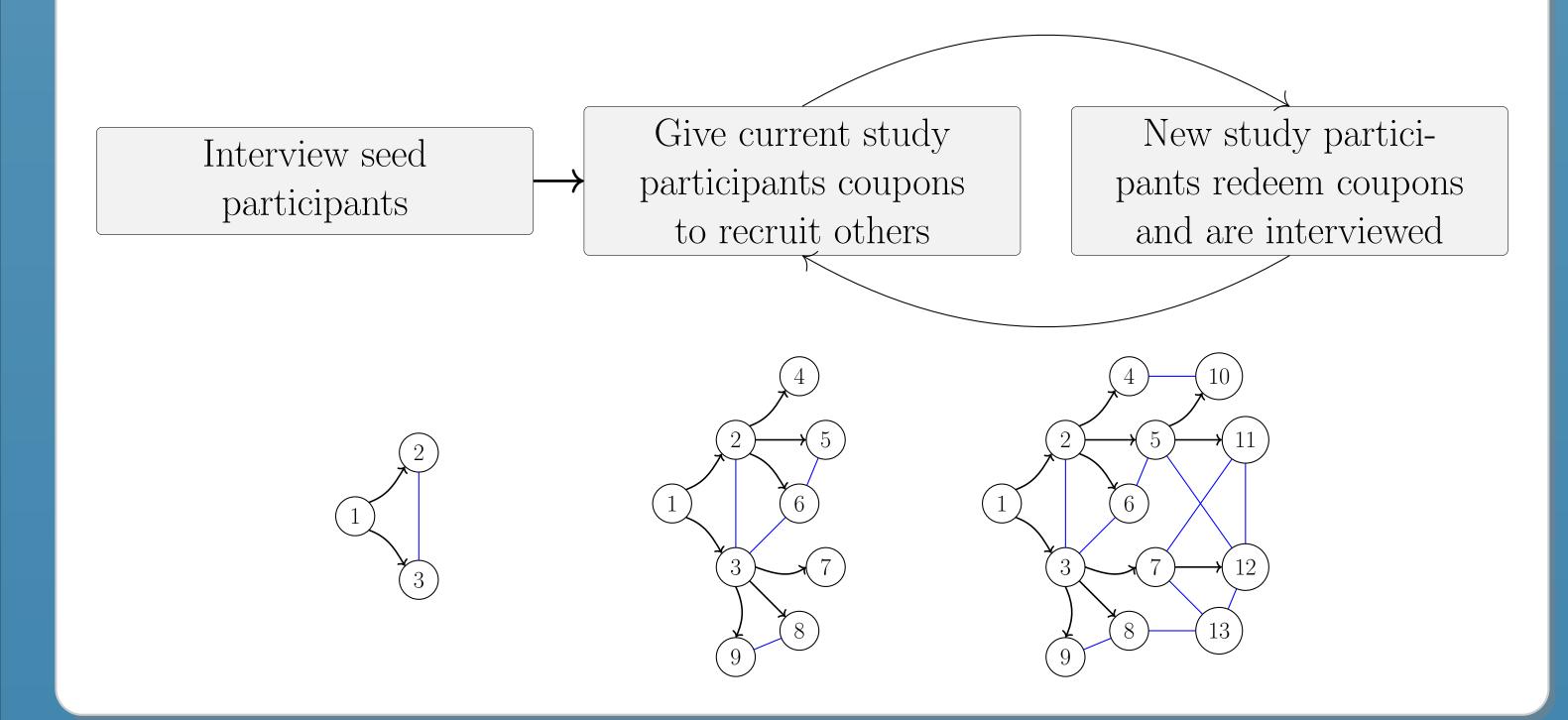
For each λ' in a grid of λ values,

Simulate from the RDS model consistent with λ'

Calculate the MLEs for these datasets

Calculate the average MLE over datasets

Respondent-Driven Sampling (RDS)



RDS Data and Inference

We consider social network G = (V, E), where V is the set of N individuals and E is the

Repeat this process for each grid value. The IIE is the RDS model whose average MLE is closest to the observed MLE.

Solution 2: Auxiliary Information

In the RDS survey, it is possible to track how information accumulates over the RDS process, and this measurement necessarily carries information about the underlying network.

Population Estimation

To estimate the population size, we must specify a model for the graph G. For example, assume the population graph is a sample from an Erdos-Renyi graph model with parameters N and p.

- N individuals in the graph
- p is the probability of a connection between any two population members

Label the number of edges individual *i* shares with unsampled members of the hidden **population** at the time of their recruitment as d_i^u . This quantity **depends on** A^S and $d_i^u \stackrel{\text{iid}}{\sim} \operatorname{Bin}(N-i,p).$

Estimating Population Size

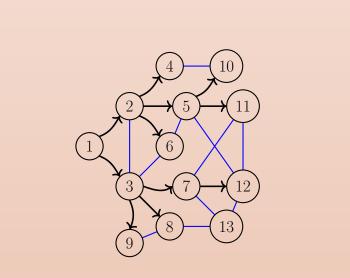
set of pairwise connections, or edges, between individuals.

Data:

- The recruitment subgraph, $G^R = (V^R, E^R) \subset G$
- Participants' degrees
- Participants' arrival times

Inference Goals:

- \rightarrow The complete sample subgraph, $G^S = (V^S, E^S)$
- \rightarrow The populations size, N



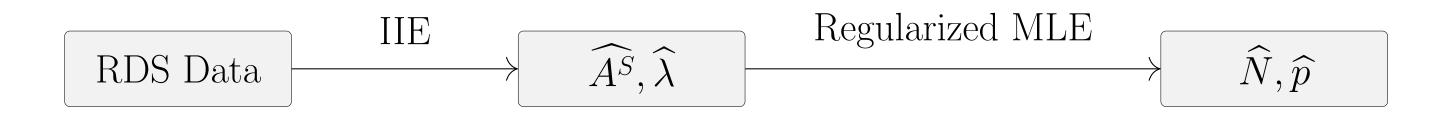
• G^R is composed of coupon exchanges \rightarrow • G^S includes both observed \rightarrow and unobserved connections -

Problems

Assuming the wait times associated with the recruitment process are i.i.d. exponential with mean $1/\lambda$, the likelihood is

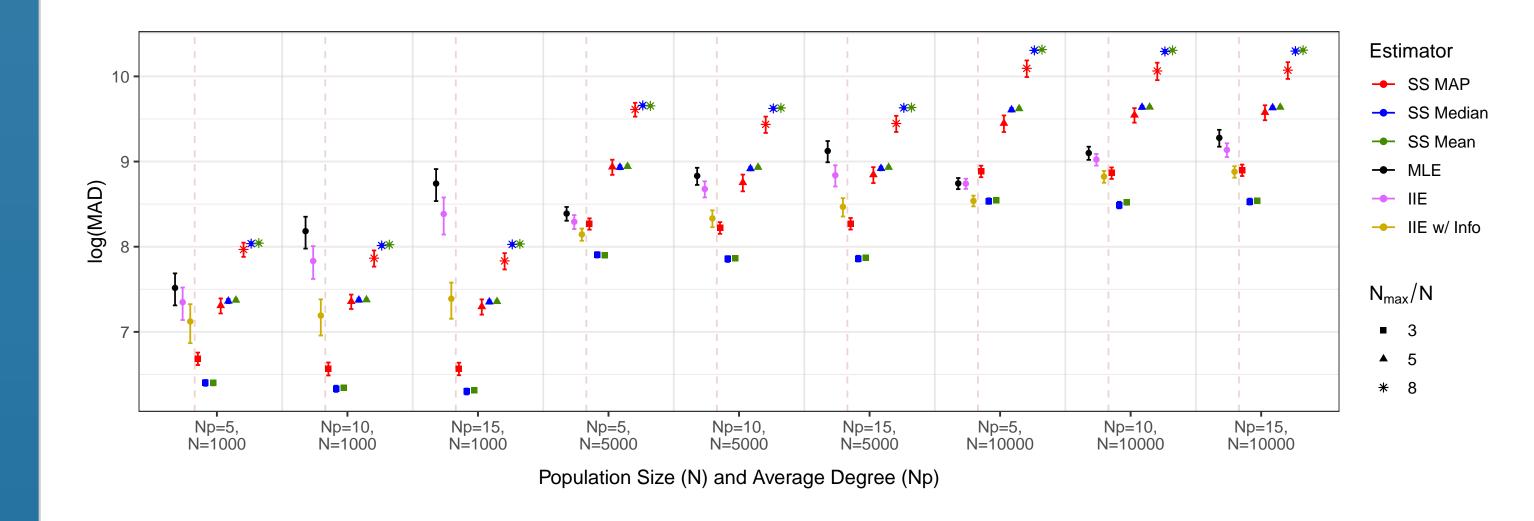
$$\mathcal{L}(\mathbf{Y}|A^S, \lambda) = \left(\prod_{j \notin M} \lambda s_j\right) \exp\left(-\lambda \boldsymbol{s}^{\top} \boldsymbol{w}\right), \text{ where}$$

- A^S is the adjacency matrix representation of G^S • \boldsymbol{s} contains the number of active coupons before each recruitment time



Simulation Results

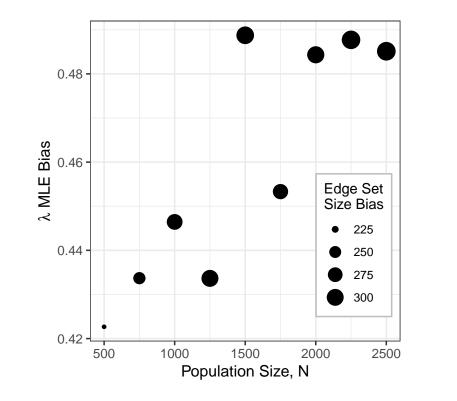
We compare the maximum absolute deviation (MAD) of successive sampling estimators [Gile, 2011], the MLE, the IIE, and the IIE with auxiliary information over a series of population sizes, N, and average degrees, Np, with 90% Monte Carlo confidence intervals.



• \boldsymbol{w} contains the time periods between recruitments

• M is the set of original study participants

Problem 1: Biased maximum likelihood estimation (MLE)



This figure depicts the bias of the MLEs for λ and $|E^S|$. We can see that the biases of these estimators are positively correlated and increase as the sample proportion decreases.

Problem 2: Ignoring useful RDS survey information

The RDS data collection process commonly includes a large survey that can be used to improve estimation.

Case Study

RDS was conducted in Estonia among people who inject drugs (PWID).

- From 2015-2021, Estonia had the highest per capita prevalence of PWID in Europe
- To lower the prevalence of HIV among PWID in Estonia, syringe exchange programs were launched in 1997 [Wu et al., 2017]
- Estimating the size of the PWID population sheds light on the magnitude of this public health crisis and the necessary scope of potential policy solutions

Algorithm	MAD	Std.
MLE	219.1	9.3

IIE w/ Info 181.3 6.8

